
Copyright is held by the author / owner(s). 
SIGGRAPH 2010, Los Angeles, California, July 25 – 29, 2010. 
ISBN 978-1-4503-0210-4/10/0007 

Parallelization of the x264 encoder using OpenCL

Erich Marth, University of Mannheim, erich.marth@googlemail.com
Guillermo Marcus, University of Heidelberg, guillermo.marcus@ziti.uni-heidelberg.de

Sources Online at: http://li5.ziti.uni-heidelberg.de/x264gpu

Best Match SelectionMotion Estimation (ME)

MC

read
frame

Motion 
EstimationOpenCL

Thread

Encoding
Thread (Host)

DCT Q

ME
MC

OC

MC DCT Q

DCTOC QOC read
frame

ME
MC

OC DCTOC Q

Motion
Compensation 

(MC)

OC

16 x 16 sized
blocks

reference

B

MC

1st Iteration

2nd Iteration

1st match

Best match

originassistance points

candidates

original candidate

40 521 3

20 221 3

inRange

40 521 3

translation tagging

21 252 63 2

1 23 2

1 2

< < <<

1

<

< <

<
selects the 
minimal 
value

Transformation (DCT)

BB BB

B BBB

BBB B

BBBB

AAA A

AA AA

AA AA

AAAA

YY YY

Y YYY

YY YY

YYYY

X XX X

XXX X

X XXX

XXXX

AA AAAA AA

AAAAAA AA

AA AA AAAA

AAAAAAAA

transformed 
block

original
macroblock

Inverse
A Matrix

A Matrix

4x4

Quantization (Q)

YY YY

Y YYY

YY YY

YYYY

ZZZ Z

Z ZZZ

Z ZZ Z

ZZZZ

Q Q QQ

QQ QQ

Q QQ Q

Q QQ Q

Quantization
Matrix

quantized
block

4x4

Best
Match

Motion 
Estimation

Best
Match

OR

GPU

CPU OC Use OpenCL computed
results

Assisted Three Step Search Exhaustive Search Derivation Selection Part One Selection Part Two 4x4 based Transformation 4x4 based Quantization

original

Figure 1: OpenCL Powered Modules Of the x.264 Encoding Pipeline

1 Introduction

With the introduction of H.264, the complexity on video encoders
has increased dramatically. As hardware based encoding solutions
profit from the strict sequential design and already feature real time
capabilities for high definition material, software solutions lack
most of the encoding performance. More precisely, the perfor-
mance of software encoders is limited due to the computation power
of encoding system as well as the high level of codec-intern de-
pendencies. As a consequence, software encoders supporting high
definition needs are very rare.

The increasing computation power of massive parallel architectures
such as modern graphics devices can be used to speed-up the en-
coding of H.264 video material. Compared to plain hardware so-
lutions, graphics device powered encoders have the advantage of
much lower initial costs and at the same time offer the flexibility of
boosting the performance with future device upgrades. In addition,
computers of today already include high performance graphics de-
vices, which improve encoding times with nearly zero extra costs.

While other stand alone GPU accelerated encoding solutions exist
for H.264, this work shows the first working parallelization of the
open source H.264 encoder x264 using OpenCL.

2 Parallelization using OpenCL

In the beginning, the parallelization was targeting a straight for-
ward OpenCL based motion estimation without the actual integra-
tion into the encoding process. One straight forward approach was
based upon the sub-optimal Three Step Search (TSS) algorithm.
The implemented Assisted Three Step Search introduced additional
assistant points for more concurrency. In addition, a second algo-
rithm was implemented, derived from the computationally intensive
Exhaustive Search (ES) – Full Search – algorithm. The Exhaustive
Search Derivation (ESD) differs in using a reduced set of candi-
dates – only a fourth of the original set – examining even positioned
translations only.

After finishing the motion estimation, the OpenCL powered com-
putation was integrated into the encoding flow of the x264 en-
coder by a plain serial design. In favor of higher encoding speeds,
better device utilization as well as better adaption to the encoder

architecture, the serial design was later replaced by a more au-
tonomous OpenCL working thread approach. The new working
thread pipeline was optimized by using principles from the RISC
architecture. More precisely, the estimation and selection modules
were stripped down to a single process, moving the extracted func-
tionality to discrete modules. In a final step, the sub-sequential Mo-
tion Estimation, Transformation and Quantization processes were
ported to OpenCL and merged into the pipeline as well.

While the Transformation was applied on blocks with 4x4 size con-
forming to the H.264 specification, the final Quantization process
was implemented equally to the variant used inside the original
x264 encoder. Compared to the H.264 specification, the x264 en-
coder merges the element-wise multiplication of the DCT with the
Quantization step using an LUT based approach.

3 Results

Considering the fact that only a fraction of the motion estima-
tion capabilities have been ported to OpenCL, the OpenCL pow-
ered encoding is up to 55% faster than the original Full Search
based encoding of the unmodified x264. While other GPU solu-
tions claim up to 20x speedup, independent tests against unmodi-
fied x264 shows similar gains as our implementation for FullHD.
Furthermore, the current work is the first open-source, working in-
tegration into the x264 encoder that enables it to profit from the
computing power of high performance graphics devices.

References
CHEN, W.-N., AND HANG, H.-M. 2008. H.264/avc motion estimation

implementation on compute unified device architecture (cuda). Tech.
rep., National Chiao-Tung University.

CROSS, J., 2008. GPU Accelerated Video Transcoding. Online Article, De-
cember. [online] http://www.extremetech.com/article2/
0,2845,2337057,00.asp.

SCHWALB, M., EWERTH, R., AND FREISLEBEN, B. 2009. Fast motion
estimation on graphics hardware for h.264 video encoding. Trans. Multi.
11, 1, 1–10.

SHIMPI, A. A., 2008. Badaboom: A Full Test of Elemental’s GPU Ac-
celerated H.264 Transcoder. Online Article, August. [online] http:
//www.anandtech.com/show/2586.


