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Figure 1: OpenCL Powered Modules Of the x.264 Encoding Pipeline

1 Introduction

With the introduction of H.264, the complexity on video encoders
has increased dramatically. As hardware based encoding solutions
profit from the strict sequential design and already feature real time
capabilities for high definition material, software solutions lack
most of the encoding performance. More precisely, the perfor-
mance of software encoders is limited due to the computation power
of encoding system as well as the high level of codec-intern de-
pendencies. As a consequence, software encoders supporting high
definition needs are very rare.

The increasing computation power of massive parallel architectures
such as modern graphics devices can be used to speed-up the en-
coding of H.264 video material. Compared to plain hardware so-
lutions, graphics device powered encoders have the advantage of
much lower initial costs and at the same time offer the flexibility of
boosting the performance with future device upgrades. In addition,
computers of today already include high performance graphics de-
vices, which improve encoding times with nearly zero extra costs.

While other stand alone GPU accelerated encoding solutions exist
for H.264, this work shows the first working parallelization of the
open source H.264 encoder x264 using OpenCL.

2 Parallelization using OpenCL

In the beginning, the parallelization was targeting a straight for-
ward OpenCL based motion estimation without the actual integra-
tion into the encoding process. One straight forward approach was
based upon the sub-optimal Three Step Search (TSS) algorithm.
The implemented Assisted Three Step Search introduced additional
assistant points for more concurrency. In addition, a second algo-
rithm was implemented, derived from the computationally intensive
Exhaustive Search (ES) – Full Search – algorithm. The Exhaustive
Search Derivation (ESD) differs in using a reduced set of candi-
dates – only a fourth of the original set – examining even positioned
translations only.

After finishing the motion estimation, the OpenCL powered com-
putation was integrated into the encoding flow of the x264 en-
coder by a plain serial design. In favor of higher encoding speeds,
better device utilization as well as better adaption to the encoder

architecture, the serial design was later replaced by a more au-
tonomous OpenCL working thread approach. The new working
thread pipeline was optimized by using principles from the RISC
architecture. More precisely, the estimation and selection modules
were stripped down to a single process, moving the extracted func-
tionality to discrete modules. In a final step, the sub-sequential Mo-
tion Estimation, Transformation and Quantization processes were
ported to OpenCL and merged into the pipeline as well.

While the Transformation was applied on blocks with 4x4 size con-
forming to the H.264 specification, the final Quantization process
was implemented equally to the variant used inside the original
x264 encoder. Compared to the H.264 specification, the x264 en-
coder merges the element-wise multiplication of the DCT with the
Quantization step using an LUT based approach.

3 Results

Considering the fact that only a fraction of the motion estima-
tion capabilities have been ported to OpenCL, the OpenCL pow-
ered encoding is up to 55% faster than the original Full Search
based encoding of the unmodified x264. While other GPU solu-
tions claim up to 20x speedup, independent tests against unmodi-
fied x264 shows similar gains as our implementation for FullHD.
Furthermore, the current work is the first open-source, working in-
tegration into the x264 encoder that enables it to profit from the
computing power of high performance graphics devices.
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